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Instructions

Background:

Climate change is increasingly affecting urban environments, with extreme heat events 

posing significant challenges to city infrastructure, public health, and local economies. 

Decision-makers require actionable insights to mitigate these impacts, especially in 

resource-constrained settings. Leveraging historic Earth observation data from NASA and 

ESA satellites, this project aims to develop a machine learning-based forecasting tool to 

predict the economic and infrastructural effects of extreme heat events in urban areas.

The thesis includes a comprehensive evaluation of the tool's economic feasibility and 

management implications, such as cost-benefit analysis, scalability for city planners, 

and utility for public health strategies. The resulting insights aim to empower 

municipalities and businesses to optimize resource allocation, prioritize interventions, 

and increase urban resilience.

1. Literature Review:

Examine research on machine learning applications for urban heat prediction and their 

economic or business impacts.

Explore case studies where predictive tools have been implemented to assess their cost-

effectiveness and value for stakeholders, such as municipalities or private enterprises.

2. Economic Impact Assessment Framework:

Identify key economic indicators affected by urban heat events, such as healthcare costs, 

energy expenditures, and infrastructure maintenance.

Develop a framework to quantify the potential economic benefits of using a forecasting 

Electronically approved by Ing. David Buchtela, Ph.D. on 23 January 2025 in Prague.



tool for heat mitigation.

3. Business Case Development:

Outline potential applications of the tool for different stakeholders, including city 

planners, public health agencies, and energy providers.

Estimate the return on investment (ROI) for implementing the tool, considering factors 

like reduced operational costs, improved planning efficiency, and enhanced public health 

outcomes.

4. Data Collection and Models Design:

Acquire and prepare satellite data, focusing on urban regions with significant economic 

and infrastructural vulnerabilities to heat events.

Investigate deep learning architectures suitable for large-scale spatiotemporal data.

5. Prototype Development:

Implement chosen models, defining the appropriate network architectures, layers, and 

hyperparameters.

Design a user-friendly prototype UI of the forecasting tool that includes visualizations of 

economic impacts, such as cost-benefit analyses, ROI estimates, and actionable insights 

for stakeholders.

Ensure the tool supports customizable scenarios to address specific urban planning or 

business needs.

6. Prototype Demonstration and Feedback:

Present the prototype to potential users, including city planners and business 

stakeholders, to gather feedback on usability, economic insights, and practical value.

Incorporate feedback into refining the tool, focusing on its adaptability to diverse urban 

and economic contexts.

7. Conclusion and Future Directions:

Summarize the tool's potential economic and business contributions to mitigating 

urban heat impacts.

Propose future enhancements, such as integrating broader climate-related risk 

assessments or expanding the tool’s applications to global markets.

Discuss how improved spatial and temporal pattern extraction from satellite imagery 

can improve resilience against extreme heat events
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Abstract

This thesis focuses on the use of machine learning and satellite data (Landsat,
Sentinel) for predicting thermal maps in urban environments. Deep learning
models, particularly CNN and U-Net architectures, were designed and tested to
predict temperature fields based on environmental indicators. Over 200 mod-
els were trained and evaluated using different parameter combinations across
various cities. The thesis includes an economic assessment of the predictive
models’ benefits for urban planning, along with a business plan and SWOT
analysis.

Keywords machine learning, satellite imagery, climate forecasting, economic
impact, cost-benefit analysis, remote sensing, urban planning, sustainable cities,
deep learning, thermal data

Abstrakt

Tato práce se věnuje využití strojového učení a družicových dat (Landsat,
Sentinel) pro predikci tepelných map ve městském prostředí. Byly navrženy
a otestovány modely hlubokého učení, zejména architektury CNN a U-Net,
pro predikci teplotních polí na základě environmentálních ukazatelů. V rámci
této práce bylo natrénováno a vyhodnoceno přes 200 modelů s různými kombi-
nacemi parametrů napříč různými městy. Součástí práce je ekonomické zhod-
nocení přínosu predikcí pro městské plánování a podnikatelksý záměr včetně
SWOT analýzy.

Klíčová slova strojové učení, tepelné snímky, satelitní snímky, předpověď
klimatu, ekonomický dopad, dálkový průzkum Země, udržitelná města
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Chapter 1

Introduction

Extreme heat events pose a growing challenge to urban environments, affecting
public health, infrastructure durability, and economic productivity. As cities
expand, they replace natural land cover with dense concentrations of pave-
ment, buildings, and other surfaces that absorb and retain heat. This leads
to significant temperature differences between urban areas and their rural sur-
roundings, particularly during the evening hours. The phenomenon not only
increases energy demands for cooling but also escalates the risk of heat-related
illnesses and mortality.

Leveraging NASA’s Landsat and ESA’s Sentinel datasets, this research
develops an ML-based forecasting tool using convolutional neural networks
(CNNs), long short-term memory (LSTM) networks, and remote sensing tech-
niques to predict extreme heat events. The integration of geospatial analy-
sis with deep learning enhances real-time climate monitoring, enabling data-
driven urban planning and resource allocation.

Moreover, the availability of high-resolution Earth Observation (EO) data
from satellite missions such as NASA’s Landsat and the European Space
Agency’s Sentinel has revolutionized the monitoring and analysis of environ-
mental changes associated with urban heat islands. By applying machine learn-
ing techniques to these data sets, it is possible to predict heat event occurrences
with greater accuracy and to model potential future scenarios under different
urban planning strategies.

The economic implications of UHI are profound, influencing public health,
energy consumption, real estate, and urban sustainability. The strategic ap-
plication of ML models in forecasting UHI effects can thus serve as a critical
tool for urban planners and policy makers, helping to guide interventions that
aim to mitigate these impacts. This thesis not only investigates the techni-
cal feasibility of such models but also evaluates their economic benefits and
scalability, providing a comprehensive view of their practical applications. As
the climate continues to change, the urgency of addressing urban heat issues
becomes increasingly critical.

1
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1.1 Objectives
The primary objective of this thesis is to develop a machine learning-based
framework for forecasting urban heat islands (UHIs) using satellite imagery,
and to evaluate its practical value from both economic and business perspec-
tives. The work is structured around the following key goals:

Data Collection: Acquire and preprocess high-resolution satellite data
from sources such as NASA’s Landsat and ESA’s Sentinel missions, with
a focus on thermal and vegetation-related indicators.

Model Development: Design and implement a deep learning model,
utilizing architectures such as convolutional neural networks (CNNs) and
U-Net, to predict land surface temperature maps based on environmental
features.

Economic Evaluation: Quantify the potential cost savings in areas such
as energy consumption, infrastructure maintenance, and healthcare by ap-
plying the prediction model to urban planning scenarios.

Business Case Analysis: Explore the real-world applicability, scalability,
and return on investment (ROI) of the solution for stakeholders including
city planners, energy providers, and public health agencies. Demonstrate
the model prototype to potential customers and parners.



Chapter 2

Background

”The urban heat island effect imposes real but often hidden costs on urban
societies by reducing the efficiency and lifespan of cooling systems, increasing
energy consumption, and leading to accelerated device failures.” [1]

Numerous studies have demonstrated the effectiveness of ML for analyzing cli-
mate change phenomena. For example, convolutional neural networks (CNNs)
have been extensively utilized for classifying land cover types, detecting urban
sprawl, and analyzing vegetation changes. Recurrent neural networks (RNNs)
and long short-term memory (LSTM) networks have shown promise in captur-
ing temporal trends, such as seasonal variations and long-term climatic shifts.
These methods enable a detailed understanding of how climate factors evolve
over time, providing a foundation for predictive modeling.

2.1 Motivation
Urbanization has significantly altered natural landscapes, leading to complex
environmental challenges such as the Urban Heat Island (UHI) effect. [2] With
rising global temperatures, cities are experiencing more frequent and intense
heatwaves, which adversely affect public health, infrastructure, and economic
productivity. [3] Predicting these extreme events using machine learning (ML)
models applied to satellite imagery presents an opportunity to enhance ur-
ban resilience and optimize resource allocation. [4] The availability of high-
resolution Earth Observation (EO) data from NASA’s Landsat and ESA’s
Sentinel missions has revolutionized climate modeling and forecasting. [5] Ad-
vances in deep learning and remote sensing analytics enable precise tempera-
ture predictions and early warning systems for urban planners. However, the
economic feasibility and scalability of such predictive systems remain underex-
plored, making it essential to evaluate their real-world business applications.

3
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2.2 Satelite Data
Satellite data play a crucial role in modern climate studies, offering high-
resolution and multi-temporal observations of the Earth’s surface. These
datasets are collected through remote sensing technology, where satellites
equipped with various sensors capture electromagnetic radiation reflected or
emitted by land, water, and the atmosphere. The data collected provide
insights into key environmental variables, such as land surface temperature
(LST), vegetation indices, and urban expansion patterns, making them essen-
tial for urban heat island (UHI) analysis.

Figure 2.1 Prague Heat

The accompanying collage 2.1 of heat map developments in Prague demon-
strates the use of satellite thermal imagery in studying urban heat islands
(UHI). These maps highlight temperature variations across urban and subur-
ban areas.
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2.2.1 Types of Satellite Imagery
Satellite images are broadly categorized based on their spectral, spatial, and
temporal resolutions. The primary types include:

Optical Imagery: Captured in the visible and near-infrared spectrum, this
type of data is widely used for land cover classification, vegetation moni-
toring, and urban development analysis. Notable sources include NASA’s
Landsat and ESA’s Sentinel-2 missions.

Thermal Imagery: Measures surface temperatures by detecting infrared
radiation, making it crucial for UHI studies. Landsat-8 Thermal Infrared
Sensor (TIRS) and Sentinel-3 Sea and Land Surface Temperature Radiome-
ter (SLSTR) provide valuable thermal datasets for heat mapping.

Radar and LiDAR Data: Active sensing technologies, such as synthetic
aperture radar (SAR) from Sentinel-1 and LiDAR from airborne systems,
are used for three-dimensional mapping of urban structures and terrain.

Hyperspectral Imagery: Captures hundreds of spectral bands for detailed
material composition analysis, aiding in distinguishing between vegetation
types and built-up areas.

2.3 Machine Learning on Satellite Data
Recent developments in computer vision and artificial intelligence (AI) have
enhanced the ability to analyze multi-spectral and thermal satellite imagery for
urban heat mapping. [5] Machine learning models, particularly convolutional
neural networks (CNNs) [6] and recurrent neural networks (RNNs) [7], have
proven effective in extracting spatial and temporal patterns from large-scale
EO data. [5] Some of the most widely used ML architectures in satellite-based
urban heat predictions include:

Convolutional Neural Networks (CNNs): Used for detecting patterns in
land surface temperature (LST), vegetation indices, and urban structures.
CNNs efficiently process multi-spectral images to classify heat zones. [8]

Long Short-Term Memory (LSTM) Networks: Ideal for capturing temporal
trends, such as seasonal temperature fluctuations, by analyzing historical
climate data. [9]

Random Forest and Gradient Boosting Models: Applied for feature selec-
tion and hybrid modeling of satellite-derived indicators, such as land cover
changes and urban expansion trends. [10]
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The integration of ML with Geographical Information Systems (GIS) [11]
and remote sensing techniques has enabled real-time monitoring of environ-
mental parameters. These innovations facilitate precise urban heat forecasts,
allowing municipalities to implement proactive heat mitigation policies.

2.4 Benchmark Results in Urban Heat Studies
Benchmark studies in urban heat modeling have underscored the significance
of integrating diverse data sources. For instance, research incorporating LST,
NDVI, and EVI values from satellite imagery has achieved high prediction
accuracy in urban heat mapping. Studies have also explored the role of con-
textual data, such as population density and socioeconomic indicators, to refine
forecasting models. [12]

2.5 Difference-in-Differences Framework
The DID framework isolates specific environmental impacts on vegetation or
urban areas, separating them from confounding variables. Applied to study
heat stress and dry-hot winds, this approach leverages vegetation indices (VIs)
derived from satellite data to model hazard impacts. Its flexibility makes
it applicable to urban heat stress modeling, providing clear quantification of
climate-related effects. [13]

2.6 Enhanced Indices
Spectral indices, derived from multi-spectral satellite imagery, play a vital role
in analyzing environmental changes, particularly in urban heat island (UHI)
studies. These indices are calculated using reflectance values from specific
satellite bands, enabling the detection of subtle variations in land cover, vege-
tation health, and surface temperatures.

Several indices widely used in UHI and climate studies:

Land Surface Temperature (LST):
Derived from thermal infrared (TIR) bands, LST provides direct measure-
ments of surface heat, which are critical for urban heat mapping. Satellites
like Landsat 8 (TIRS) and Sentinel-3 (SLSTR) offer thermal data suitable
for LST extraction.2.2

Normalized Difference Water Index (NDWI): Using green (G) and near-
infrared (NIR) bands, NDWI helps map water bodies and monitor moisture
content, which influence urban microclimates and cooling patterns.2.3

Enhanced Vegetation Index (EVI): Building upon NDVI, EVI incorpo-
rates blue (B) band data to correct for atmospheric distortions and canopy
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Figure 2.2 LST

background noise, offering more accurate vegetation assessments in densely
vegetated or urban areas.2.4

Each of these indices utilizes specific spectral bands from satellite sensors to
extract environmental information. The integration of multiple indices al-
lows for a more nuanced understanding of urban ecosystems, enabling precise
modeling of factors like vegetation health, surface heat distribution, and the
presence of impervious surfaces. [14]

2.7 Remote Sensing and GIS Techniques for Data
Preparation

Remote sensing and GIS techniques are critical for preparing satellite data for
urban heat island (UHI) studies and machine learning (ML) analyses. Pre-
processing steps, such as radiometric and geometric corrections, remove sen-
sor errors and spatial distortions, ensuring data consistency across different
time periods and sensors.[14] Cloud and shadow masking, often applied us-
ing algorithms like Fmask, further improve data quality, especially in optical
imagery.[15]
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Figure 2.3 NDWI

Integrating multi-spectral and thermal data enables detailed environmen-
tal analysis. For example, multi-spectral bands are used to calculate indices
like NDVI and NDBI, which help assess vegetation health and urban devel-
opment[12], while thermal infrared bands provide land surface temperature
(LST) data crucial for UHI mapping.[1]

GIS tools support data layering, feature extraction, and spatial analysis,
converting raw satellite data into usable formats for ML models. Techniques
like spatial resampling and zonal statistics help standardize datasets and ex-
tract meaningful patterns across urban environments. [11] These combined
remote sensing and GIS methods ensure that data fed into predictive models
are accurate, reliable, and actionable.

2.8 Urban Heat Islands: Formation and Character-
istics

Urban Heat Islands (UHIs) are areas within cities that are significantly warmer
than surrounding rural regions, primarily due to urbanization. Natural land
covers are replaced with buildings, asphalt, and concrete—materials that ab-
sorb and retain heat more than vegetation or soil.
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Figure 2.4 EVI

Several key factors contribute to UHI formation:

Low albedo surfaces: Materials like asphalt store heat during the day
and release it at night, keeping urban areas warmer.

Lack of vegetation: Trees and plants cool the air through evapotranspi-
ration. Their absence reduces natural cooling.

Anthropogenic heat: Emissions from traffic, industry, and air condi-
tioning increase local temperatures.

Urban geometry: Narrow streets and tall buildings trap heat and block
wind, creating “urban canyons.”

The UHI effect is usually strongest at night and during summer. Within
cities, temperature differences vary—green areas tend to be cooler, while dense
built-up zones can become heat hotspots.



Chapter 3

Economic Impact Assessment
Framework

Urban heat islands (UHIs) impose significant economic burdens on cities, af-
fecting key sectors such as healthcare, energy consumption, and infrastructure
maintenance. Machine learning (ML) models, combined with remote sensing
and geospatial data, offer predictive capabilities that enable proactive decision-
making to mitigate the economic impacts of extreme heat events. This section
explores an economic impact assessment framework, integrating forecasting
tools for urban heat mitigation, and evaluates how ML-based thermal data
predictions can optimize infrastructure investments and resource allocation.

3.1 Key Economic Indicators Affected by Urban
Heat Events

Urban heat events create cascading economic impacts across multiple sectors.
This analysis categorizes the primary economic indicators that can be quanti-
fied to assess the benefits of predictive modeling

3.1.1 Energy Expenditures
Higher urban temperatures increase electricity demand, particularly for air
conditioning, placing a financial strain on businesses and households.

Studies on urban redevelopment using ML-based thermal data suggest that
energy-efficient infrastructure can reduce peak cooling demands by 15-20 per-
cent. [15] [16]

Forecasting tools provide early warnings on heat intensity, allowing energy
providers to adjust power grid loads and prevent blackouts, thus avoiding
economic disruptions.

10
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3.1.2 Infrastructure Maintenance and Longevity
Heat stress accelerates material degradation in roads, bridges, and buildings,
requiring frequent repairs and increasing maintenance costs.

Remote sensing analysis of UHI in Quezon City, Philippines, shows that
temperature variations reduce the lifespan of road materials by up to 30 percent
due to thermal expansion and contraction cycles. [12]

If the asphalt grade is incorrect by one 6°C increment, the net present
value of maintenance and rehabilitation costs can increase by approximately
6.8 to 9.8 percent depending on the road type. For two increments, these costs
escalate to 9.2 to 17.4 percent. [17]

ML-based forecasting of high-risk zones enables targeted investment in
heat-resistant materials and smart cooling infrastructure, extending urban in-
frastructure lifespan.

3.1.3 Healthcare Costs
Extreme heat increases heat-related illnesses such as heat strokes, cardiovascu-
lar stress, and respiratory complications, leading to higher hospital admissions
and emergency response costs.

A study coming from Arizona State University from year 2016 estimates
that the economic burden of heat-related illnesses in Phoenix is USD 479
million annually, representing 0.3 percent of the city’s GDP. [1]

Predictive models integrating satellite-derived LST and socioeconomic data
can help allocate healthcare resources efficiently, reducing emergency response
delays and costs.

3.2 Energy savings
In the section below I provide an estimation of energy savings on air condi-
tioners in the city of Prague using prediction model for city planning.

3.2.1 Estimation for Prague
Average energy consumption in Czechia was 25 million tonnes of oil equiva-
lent (Mtoe). [18] Households accounted for approximately 15 percent of the
total energy consumption, equating to 3.75 Mtoe. In European households,
air conditioning typically represents about 1-5 percent of residential energy
consumption. Assuming a 3 percent average, this amounts to 0.1125 Mtoe
and since the air conditioners work during four summer months only it results
in 0.0375 Mtoe for air conditioning in Czechia. As Prague comprises roughly
12 percent of Czechia’s population, its share of air conditioning energy use
would be approximately 0.0045 Mtoe, equivalent to 52 GWh.
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Studies on urban redevelopment using ML-based thermal data suggest that
energy-efficient infrastructure can reduce peak cooling demands by 15-20 per-
cent. [15] [16]. Assuming 15 percent reduction to Prague’s 52 GWh annual air
conditioning energy use results in savings of approximately 7.8 GWh annually.
Assuming an average electricity cost of €0.20 per kWh, the financial savings
would be: 7,800,000 kWh * €0.20/kWh = €1,560,000 annually.

The whole is not getting rebuild in one day, but different areas of Prague
are in active development so let’s see how can we benefit by using ML in urban
planning there.

3.2.2 Case scenario
In this section, I explore a case scenario focused on the Karlín area, which has
been undergoing active redevelopment over the past decade, with projects still
in progress. Figure 3.1 provides a heat map illustrating the area’s urban heat
dynamics.

Figure 3.1 Heat Map

3.2.2.1 Scenario A: without using ML model
Current situation of the development is that infrastructure changes lead to
raising temperature of the area. That results in higher energy expenditures in
the area during hot months and maintenance costs.
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Estimated expenses only on air cooling systems in the are of Karlín are
based on the calculations above around a million euros every year. Infras-
tructure maintenance costs aren’t publicly available, we can estimate them at
another million euros annually.

3.2.2.2 Scenario B: using ML model
Based on results of other studies on the topic both types of expenses can be
reduced by 15 percent if taking actions in the development projects based on
prediction models. That would result in €300,000 money spared every year
just on air cooling and road maintenance in the area.

3.3 Environmental, Social, and Governance (ESG)
Considerations

In addition to economic metrics, urban development strategies increasingly
incorporate ESG — Environmental, Social, and Governance criteria to assess
broader sustainability impacts. ESG frameworks are now a central component
of both public policy and private investment, particularly in the context of
climate change adaptation. Integrating ESG into the economic impact assess-
ment of urban heat island (UHI) forecasting tools enhances their relevance,
accountability, and alignment with the goals of the EU Corporate Sustainabil-
ity Reporting Directive (CSRD) and global climate policy.

3.3.1 Environmental Perspective
The environmental benefits of using predictive models for UHI mitigation are
multifold. By reducing heat stress through informed urban planning—such
as increasing green cover, optimizing building materials, or improving cooling
efficiency—cities directly contribute to:

Lower greenhouse gas emissions: Predictive modeling enables energy-
efficient interventions that decrease reliance on air conditioning, leading to
reductions in electricity demand and associated CO� emissions.

Improved urban biodiversity: Strategic planting of vegetation and de-
sign of green corridors support urban ecosystems and biodiversity, mitigat-
ing the ecological fragmentation caused by dense infrastructure.

Sustainable land use: Heat prediction helps in identifying climate-
resilient zones, promoting development patterns that respect environmen-
tal thresholds and minimize ecological degradation.

These interventions align with the environmental component of ESG, rein-
forcing commitments to climate adaptation, resource efficiency, and environ-
mental stewardship.
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3.3.2 Social Perspective
From a social perspective, UHI disproportionately affects vulnerable popu-
lations, including the elderly, low-income households, and individuals with
pre-existing health conditions. Incorporating social considerations into the
predictive planning framework ensures that the benefits of climate resilience
are equitably distributed:

Health equity: Forecasting extreme heat enables targeted deployment of
cooling centers, healthcare resources, and early warning systems to high-
risk communities, reducing heat-related morbidity and mortality.

Affordable living conditions: Lower energy expenditures through pas-
sive cooling and green infrastructure support cost savings for households,
particularly those at risk of energy poverty.

Urban inclusivity: Participatory planning based on spatial heat risk data
fosters inclusive urban design, where citizen engagement informs interven-
tions that reflect local needs.

3.3.3 Governance Perspective
The deployment of ML-based urban heat prediction tools requires transparent
and accountable governance frameworks that address data ethics, implemen-
tation oversight, and long-term policy integration. ESG-aligned governance
involves:

Transparent data use: Ensuring that satellite-derived data and ML
predictions are handled in compliance with privacy standards and open-
data principles.

Public accountability: Involving local authorities, city councils, and
urban development agencies in the validation and oversight of model-driven
planning decisions.

Long-term strategy alignment: Integrating predictive models into broader
climate action plans and sustainable development goals (SDGs), supported
by institutional continuity and policy coherence.
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Business Case Development

The adoption of machine learning (ML)-based forecasting tools for predicting
urban heat hotspots has significant implications for various stakeholders, in-
cluding city planners, public health agencies, and energy providers. By leverag-
ing thermal satellite data, these tools can optimize decision-making processes,
improve resource allocation, and enhance urban resilience. This chapter out-
lines the potential applications of ML-driven urban heat prediction and es-
timates the Return on Investment (ROI) by analyzing the economic benefits
in terms of operational cost reduction, planning efficiency, and public health
improvements.

4.1 Stakeholder Applications of ML-Based Urban
Heat Prediction

Stakeholders across various sectors stand to gain significantly from the adop-
tion of ML-based urban heat prediction models. For city planners and mu-
nicipal authorities, these models offer crucial insights into heat vulnerability
zones, helping guide urban design choices and disaster preparedness strate-
gies. By identifying at-risk areas, authorities can prioritize interventions such
as increasing green spaces, improving building materials, and enhancing cool-
ing infrastructure. Public health agencies also benefit by refining heatwave
mitigation plans, ensuring that resources like cooling centers are effectively
distributed and staffing is adjusted in anticipation of heat-related illnesses.
Finally, energy providers leverage these models for better load forecasting, de-
mand management, and infrastructure optimization, which ultimately leads
to cost savings and improved service delivery. The integration of ML-driven
tools across these stakeholders fosters more efficient, resilient, and equitable
urban environments, driving both immediate and long-term benefits.

15
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4.1.1 City Planners and Municipal Authorities
City planners can utilize ML-based heat forecasting models to optimize urban
design and infrastructure planning. By identifying high-risk heat zones, au-
thorities can implement targeted interventions such as increasing green spaces,
using reflective roofing materials, and adjusting building regulations to pro-
mote heat resilience. Additionally, predictive models support disaster pre-
paredness strategies by providing early warnings of extreme heat events, allow-
ing municipalities to allocate emergency resources more efficiently. Integrating
these forecasting tools into smart city initiatives enhances data-driven decision-
making, leading to long-term improvements in urban sustainability. [19]

4.1.2 Public Health Agencies
Public health agencies benefit from ML-driven heat forecasting by improving
heatwave mitigation plans. Predictive analytics assist in identifying high-risk
zones, optimizing the placement of cooling centers, and ensuring equitable
distribution of resources. By correlating heat exposure data with hospital
admission records, healthcare institutions can anticipate spikes in heat-related
illnesses and adjust staffing and emergency response measures accordingly.
Advanced air quality monitoring, combined with thermal data, allows agencies
to develop policies aimed at reducing the adverse health effects of prolonged
heat exposure, particularly among vulnerable populations such as the elderly
and low-income communities.

4.1.3 Energy Providers and Utility Companies
Energy providers can utilize urban heat prediction models to enhance load
forecasting and demand management. Anticipating peak energy consump-
tion during heatwaves allows for better grid stability and reduces the likeli-
hood of power outages. Predictive models also help utilities optimize cooling
system efficiency and adjust pricing strategies based on forecasted demand.
Furthermore, insights from ML-driven thermal data enable infrastructure im-
provements, such as the deployment of energy-efficient technologies and smart
grids, leading to long-term cost reductions and enhanced service reliability.

4.2 SWOT Analysis
In this section, I conduct a SWOT analysis to assess the strengths, weak-
nesses, opportunities, and threats associated with the use of satellite data for
environmental modeling. Table 4.1 summarizes these factors.
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Strengths Weaknesses
Advanced Technology Utilization High Initial Investment

Data Availability Data Privacy and Security
Real-time Monitoring and Response Dependency on External Data Sources

Opportunities Threats
Expansion to Other Urban Areas Technological Obsolescence

Enhancement of Smart City Initiatives Regulatory and Compliance Issues

Table 4.1 SWOT Analysis

4.2.1 Strengths
Advanced Technology Utilization: Leveraging state-of-the-art machine learn-
ing (ML) models, including CNNs and LSTMs, provides a sophisticated
approach to analyzing complex spatial and temporal data from satellite
imagery.

Data Availability: Access to high-resolution, multi-temporal satellite data
from reputable sources like NASA’s Landsat and ESA’s Sentinel enhances
the accuracy and reliability of urban heat predictions.

Real-time Monitoring and Response: The ability to monitor urban envi-
ronments in real time allows for quick responses to heat events, potentially
reducing public health risks and infrastructure damage.

4.2.2 Weaknesses
High Initial Investment: Setting up the necessary infrastructure for ML and
satellite data analysis can be costly, requiring significant upfront investment
in technology and expertise.

Data Privacy and Security: Handling sensitive geographical and environ-
mental data necessitates robust security measures to prevent unauthorized
access and data breaches.

Dependency on External Data Sources: Reliance on satellite data from
external agencies like NASA and ESA could pose risks related to data
availability and control.

4.2.3 Opportunities
Expansion to Other Urban Areas: Once proven effective, the model can
be scaled and adapted to other cities worldwide, broadening the scope of
impact.
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Enhancement of Smart City Initiatives: Integrating ML predictions with
smart city technologies can enhance urban living standards by improving
climate resilience and sustainability.

4.2.4 Threats
Technological Obsolescence: Rapid advancements in technology could ren-
der the current ML models and methodologies outdated, necessitating con-
tinual updates and upgrades.

Regulatory and Compliance Issues: Changes in data use policies and reg-
ulations could impact the availability and use of satellite data.

4.3 Risk assessment
In this section, we assess the potential risks associated with the use of satel-
lite data and model development. Table 4.2 outlines key risks such as data
inaccuracy, technological failure, compliance issues, and cybersecurity threats,
along with their associated consequences, probabilities, and risk groups. The
risk group matrix in Table 4.3 provides a clear categorization of the likelihood
and severity of these risks, helping to prioritize mitigation efforts. To address
these concerns, Table 4.4 presents proposed actions for risk removal and impact
mitigation, which include enhanced validation protocols, system maintenance,
compliance training, and the implementation of security measures. These ta-
bles provide a comprehensive overview of the risks and mitigation strategies,
ensuring the reliability and security of the satellite data and models used in
this research.

4.3.1 Risks

Risk Description Consequences Probability Risk Group
Data Inaccuracy 4 2 3

Technological Failure 3 3 3
Regulatory Compliance Issues 3 2 2

Cybersecurity Threats 5 2 3
Data Privacy Breaches 4 2 3
Model Scalability Issues 3 2 2

Table 4.2 Risk Assessment

Data Inaccuracy: Inaccurate or outdated satellite data could lead to erro-
neous predictions, potentially affecting decision-making processes.
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Probability | Consequences Insignificant (1) Minor (2) Moderate (3) Major (4)
Almost Certain 1 2 3 3

Likely 1 2 2 3
Possible 1 2 2 3
Unlikely 1 2 2 2
Rare 1 1 1 2

Table 4.3 Risk Group Matrix

Risk Description Removal Actions Impact Mitigation Actions
Data Inaccuracy Enhanced validation protocols Regular data audits, calibration

Technological Failure System maintenance Fail-safes, backup systems
Compliance Issues Continuous legal monitoring Compliance training, consultations

Cybersecurity Threats Use of advanced security measures Regular security audits, updates
Data Privacy Breaches Encryption, access controls Data breach response plan
Model Scalability Issues Incremental testing and upgrades Scalability assessments

Table 4.4 Risk removal and impact mitigation

Technological Failure: Breakdowns or malfunctions in hardware or software
could interrupt data processing and model operation.

Compliance Issues: Non-compliance with data use and privacy laws could
lead to legal penalties and loss of reputation.

Cybersecurity Threats: Unauthorized access to the system could compro-
mise sensitive data and disrupt service operations.

Data Privacy Breaches: Exposure of confidential data can violate privacy
agreements and lead to legal challenges.

Model Scalability Issues: Difficulty in scaling the model to larger or differ-
ent urban environments could limit its applicability.

4.4 Expenses
In this section, a breakdown of the expenses associated with the project is
provided. The costs cover a range of categories including data acquisition,
computing resources, software licenses, personnel salaries, research and devel-
opment, and operational overhead.

Data Acquisition Costs: €20,000

Computing Resources: €30,000

Software Licenses: €15,000
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Figure 4.1 Expenses

Personnel Salaries: €100,000

Research and Development: €25,000

Operational Overhead: €10,000

Figure 4.1 visualizes these expenses, offering a clear representation of how
the budget is allocated across different areas.

Data Acquisition Costs: Expenses related to obtaining satellite data from
sources like NASA’s Landsat and ESA’s Sentinel.

Computing Resources: Costs for computational power, including servers
and cloud services necessary for processing large datasets and running ML
models.

Software Licenses: Fees for specialized software required for data process-
ing, ML model development, and other tasks.

Personnel Salaries: Salaries for data scientists, developers, project man-
agers, and other staff involved in the project.

Research and Development: Funds allocated to exploratory research, model
testing, and validation.

Operational Overhead: General administrative costs, including office space,
utilities, and other miscellaneous expenses.

Annual Operating Costs:
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Expense Category Annual Cost (€)
Computing Resources 10,000
Personnel Salaries 30,000
Research and Development 5,000
Operational Overhead 5,000
Total 50,000

Table 4.5 Annual Operating Cost Breakdown

4.5 Financial projections
This section presents the financial projections for the ML-based urban heatmaps
forecasting project over the next five years. The projections include detailed
estimates of costs, revenue, and profits, illustrating the project’s financial via-
bility and potential return on investment (ROI). The initial investment for the
project is substantial, totaling €200,000, primarily due to the costs associated
with setting up the necessary infrastructure, acquiring data, and hiring skilled
personnel.

Figure 4.2 Financials

Revenue is expected to grow annually by 20 percent, as the service gains
traction among municipalities and urban planners seeking to mitigate the ef-
fects of urban heat islands.4.2

Initial Investment: €200,000 (Year 0)4.1 Annual Operating Costs: €50,000
for subsequent years4.5 Annual Revenue: Starts at €60,000 in Year 1 and grows
by 20 percent annually.4.6
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Year Costs (€) Revenue (€) Profit (€)
Year 0 -200,000 0 -200,000
Year 1 50,000 60,000 10,000
Year 2 50,000 72,000 22,000
Year 3 50,000 86,400 36,400
Year 4 50,000 103,680 53,680
Year 5 50,000 124,416 74,416

Table 4.6 Financial Projections
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Data Collection and Models
Design

The primary source of training data for this research is satellite imagery from
the Landsat and Sentinel missions. These datasets are critical for monitoring
and analyzing various environmental factors, including urban heat islands,
vegetation cover, and moisture content.

Figure 5.1 provides a chart illustrating the number of publications utilizing
different satellite data sources in recent years, with the main contributors being
Landsat and Sentinel. The chart highlights the growing trend of publications
from these sources, which reflects the increasing reliance on satellite imagery
in environmental research.

5.1 Bulk download
The acquisition of satellite imagery is conducted through an automated bulk
download process, utilizing Python scripts to facilitate large-scale data re-
trieval. This process is supported by the EarthAccess API, which allows pro-
grammatic access to satellite data repositories maintained by NASA. The im-
agery is specifically sourced from the Harmonized Landsat Sentinel (HLS)
dataset, including both HLS S30 (Sentinel-2) and HLS L30 (Landsat-8) prod-
ucts. For this study, only images with cloud coverage less than 30 percent are
selected to ensure the quality and usability of the data for accurate environ-
mental analysis.

The HLS S30 dataset from Sentinel-2 provides multi-spectral images that
are crucial for extracting Enhanced Vegetation Index (EVI) and Normalized
Difference Water Index (NDWI). These are derived using bands B02 (Blue),
B03 (Green), B04 (Red), and B08 (Near-Infrared). Cloud masking is per-
formed using the Fmask algorithm, which is integrated into the dataset pro-
cessing pipeline to exclude cloud-contaminated pixels effectively.

23
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Figure 5.1 Sources (adapted from [14])

Similarly, the HLS L30 dataset from Landsat-8 includes thermal infrared
data, particularly band B10, which is essential for calculating Land Surface
Temperature (LST). This band, along with the Fmask cloud masking data,
ensures that the temperature readings are precise and reliable.

5.2 Preprocessing
Once the raw satellite imagery in TIF format is collected, a series of prepro-
cessing steps are performed to prepare the data for analysis. The first step
involves cropping the images to the regions of interest to focus on the rele-
vant urban areas. Following this, the individual satellite images are merged
into composite datasets to ensure complete coverage and temporal consistency.
The merging process is particularly important when using data from different
satellite sources, as it helps address potential variations in sensor calibration
and alignment between the images.

Data cleaning is the next crucial step, where the raw images are examined
for any noise, inconsistencies, or artifacts that could affect the quality of the
analysis. This involves removing clouds, correcting for atmospheric effects,
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and filling in missing or corrupted data. The goal of the cleaning process is to
ensure that the data is as accurate and reliable as possible before any further
analysis is performed.

5.3 Indicators extraction
After preprocessing, various spectral indices are extracted from the cleaned
satellite imagery. These indices serve as key indicators for environmental fea-
tures, such as surface temperature, vegetation health, and moisture content.
Specifically, I calculate thermal, vegetation, and moisture indices, which are
integral for analyzing urban heat island effects, vegetation cover changes, and
moisture distribution. These indices are then saved as PNG images with a de-
fined resolution, providing a standardized format for subsequent analysis and
model training.

The careful preparation of the satellite imagery ensures that the data is
ready for feature extraction and machine learning analysis, enabling the devel-
opment of predictive models that can accurately assess urban environmental
conditions.

5.4 Model structure
The prototype model was developed using the Keras library within the Ten-
sorFlow framework. A range of model configurations was explored, varying in
structural complexity, hyperparameters (e.g., learning rate, batch size), opti-
mization techniques, and training duration. The iterative development process
aimed to identify the architecture best suited for predicting high-quality LST
maps from input environmental indicators.5.2

5.4.1 Model 1
The first of final models architecture incorporates the following key compo-
nents:

Input Layers The model features three distinct input layers, each corre-
sponding to grayscale images of LST, Enhanced Vegetation Index (EVI),
and Normalized Difference Water Index (NDWI) indicators.

Shared Convolutional Architecture These inputs are processed through
identical convolutional branches, enabling feature extraction for each indi-
cator independently.

Output Layer The extracted features are combined to produce a single out-
put: a 2D grayscale image representing the predicted LST map for the
given input area.
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Figure 5.2 Input and Output

The model leverages convolutional neural networks (CNNs), which are well-
suited for tasks involving spatial data such as images. CNNs demonstrated ex-
cellent performance in this application due to their ability to learn hierarchical
spatial features. 5.3

5.4.2 Model 2
The second model was designed to address the complexities and resource-
intensive demands of the initial prototype. Developed to optimize training
speed and computational efficiency, this model employs a U-Net architecture,
which is particularly renowned for its effectiveness in image segmentation tasks,
a crucial aspect of our project’s focus on predicting land surface temperature
(LST) maps.

Input Layer The model starts with an input layer that accepts images of
predefined shape, catering to the diverse dimensions of satellite imagery
data.

Contracting Path The initial layers consist of a sequence of convolutions
and max pooling operations:

A convolutional layer with 16 filters of size 3x3, followed by a ReLU
activation and same padding, ensures feature extraction without losing
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input size.
This is followed by a max pooling layer that reduces the dimensionality
by half, enhancing the model’s ability to handle larger images efficiently.

Bottleneck This central part of the network includes:

A convolutional layer with 64 filters, maintaining the feature extraction
momentum before the expansive path begins.

Expansive Path Sequentially increasing the spatial dimensions through up-
sampling, each step is combined with a previous corresponding convolu-
tional layer output:

Up-sampling layers increase the resolution of the output feature maps,
which are then concatenated with the corresponding feature maps from
the contracting path, providing high-resolution features for precise lo-
calization.
Convolutions following each up-sampling merge features to refine the
predictions, culminating in finer details and improved accuracy.

Output Layer The final layer of the model uses a convolution to produce a
single-channel output image, representing the predicted LST map with a
sigmoid activation to ensure output values between 0 and 1, suitable for
probability-based segmentation tasks.

This U-Net architecture significantly reduces training time and resource
consumption without compromising the quality of the output. Its layered
structure allows for efficient feature representation at multiple scales, which is
critical for the accurate prediction of thermal patterns across urban landscapes.
Below is the implementation code5.1 for this model, illustrating the layered
approach used to construct the U-Net architecture. 5.4

1 def build_model(input_shape):
2 inputs = Input(shape=input_shape)
3 c1 = layers.Conv2D(16, (3, 3), activation='relu',

padding='same')(inputs)
4 p1 = layers.MaxPooling2D((2, 2))(c1)
5 c2 = layers.Conv2D(32, (3, 3), activation='relu',

padding='same')(p1)
6 p2 = layers.MaxPooling2D((2, 2))(c2)
7 c3 = layers.Conv2D(64, (3, 3), activation='relu',

padding='same')(p2)
8 u4 = layers.UpSampling2D((2, 2))(c3)
9 u4 = layers.concatenate([u4, c2])

10 c4 = layers.Conv2D(32, (3, 3), activation='relu',
padding='same')(u4)

11 u5 = layers.UpSampling2D((2, 2))(c4)
12 u5 = layers.concatenate([u5, c1])
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13 c5 = layers.Conv2D(16, (3, 3), activation='relu',
padding='same')(u5)

14 outputs = layers.Conv2D(1, (1, 1), activation='sigmoid')
(c5)

15 model = models.Model(inputs, outputs)
16 return model

Code listing 5.1 U-Net model

This streamlined model enhances our ability to quickly adjust and iterate
on the forecasting process, allowing for rapid deployment and testing in various
urban settings.

5.5 Training and Optimization
The model was compiled using the Adam optimizer and mean squared er-
ror (MSE) loss function, both of which are well-suited for regression tasks.
Training was conducted over multiple epochs, with early stopping and model
checkpointing to prevent overfitting.

1 train_ds , val_ds = load_data(DATA_DIR,
2 batch_size=BATCH_SIZE , sequence_length=

SEQUENCE_LEN , sequence_step=SEQUENCE_STEP ,
3 future_step=FUTURE_STEP , target_size=

target_size)
4

5 model = build_model(input_shape=(IMAGE_X, IMAGE_Y,
INDICATORS_COUNT * SEQUENCE_LEN))

6 model.compile(optimizer='adam', loss='mse', metrics=['
mae'])

7

8 callbacks = [
9 tf.keras.callbacks.ModelCheckpoint(

10 filepath="models/checkpoints/model_checkpoint.h5
",

11 save_best_only=True,
12 monitor="val_loss",
13 mode="min"
14 ),
15 tf.keras.callbacks.TensorBoard(log_dir="logs")
16 ]
17

18 history = model.fit(
19 train_ds,
20 validation_data=val_ds,
21 epochs=EPOCHS,
22 callbacks=callbacks
23 )
24
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25 model.save(MODEL_PATH)

Code listing 5.2 Training code

The training process utilized mixed-precision computation to accelerate
performance on compatible hardware. 5.2

5.5.1 Averaged Output Labels
To improve the temporal consistency of the prediction target, the model was
trained using averaged future thermal images instead of a single LST frame.
This reduces the impact of short-term anomalies (e.g., cloud cover, noise) and
provides a smoother supervisory signal during training.

The output label Y is computed as the mean of the next n LST frames
following the input sequence:

Y =
1

n

n−1∑
i=0

LSTt+∆+i

Where t is the index of the last image in the input sequence, ∆ is the future
offset (prediction step), n is the number of future frames averaged.

5.6 Model Evaluation and Comparison Framework
To assess the performance of the trained deep learning models and to enable
rigorous comparison across different configurations, an evaluation framework
was implemented using a combination of statistical metrics and hotspot detec-
tion analysis. The evaluation plays a crucial role in selecting optimal model
variants for deployment and understanding their robustness across different
urban contexts.

5.6.1 Purpose of Evaluation
Given the large number of models trained—over 200 in total—each with unique
configurations a consistent evaluation pipeline was necessary to benchmark
and compare model accuracy, generalization, and suitability for operational
deployment.

Configurations:
Target city

Resolution of images

Sequence length and length of time steps between them

Prediction horizon

Batch size and number of training epochs
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5.6.2 Evaluation Metrics
Each model was evaluated on a validation dataset using the following quanti-
tative metrics:

MAE (Mean Absolute Error): Measures the average pixel-wise difference
between predicted and actual temperatures.

MSE (Mean Squared Error): Quantify the magnitude of prediction errors.

Cross-Correlation: Measures spatial alignment and similarity between im-
ages.

Mutual Information (MI): Evaluates how much information is shared be-
tween prediction and ground truth images.

F1 Score: Assesses the balance between precision and recall in identifying
UHI hotspots.

Recall: Measures the model’s ability to correctly identify all true hotspot
areas.

5.6.3 Hotspot Detection
A custom hotspot detection algorithm was developed to quantify the model’s
effectiveness in identifying extreme heat zones. It operates on a localized
window and flags pixels that exceed a certain threshold over the neighborhood
mean. This approach mimics real-world use cases where detecting anomalously
hot zones is more valuable than merely reducing average error.

5.6.4 Evaluation Pipeline
An automated script was designed to train and evaluate models in batches
using different configuration combinations. Results from all experiments were
stored in a structured JSON format for further analysis. Each entry includes
model parameters, training history, and average metric scores.

5.6.5 Model Selection
The results of the evaluation pipeline guided the selection of optimal model
configurations for each city and use case. Models that demonstrated high
hotspot recall and F1 scores, while maintaining low MAE and MSE, were
prioritized for deployment in the web application and API interface.
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The ability to benchmark models at scale across multiple spatial and tem-
poral conditions proved critical in identifying trade-offs between model com-
plexity, accuracy, and generalization. This evaluation system lays the foun-
dation for future improvements, such as automated hyperparameter tuning or
ensemble modeling.



Model Evaluation and Comparison Framework 32

Figure 5.3 Model structure
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Figure 5.4 U-NET Model structure
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Figure 5.5 Structure



Chapter 6

Prototype Development

The development of this prototype involves selecting appropriate technologies
and methodologies for implementing a robust deep learning model for predict-
ing land surface temperature (LST) maps. The following sections detail the
technologies employed and the model’s development process. 5.5

6.1 Technologies used
In this section, I explore the various technologies employed in the creation
of the machine learning prediction model for generating heat maps of urban
areas. The decision to use these specific technologies was influenced by their
functionality, availability of relevant features, and the familiarity I had with
each. Ultimately, the aim was to select the most appropriate tools that would
facilitate the creation of a high-performing, scalable model.

6.1.1 Python
Python was chosen as the primary programming language for this project
due to its versatility and the vast ecosystem of libraries and frameworks it
offers. Python is particularly well-suited for tasks involving machine learning,
image processing, and tensor manipulation, which form the foundation of this
work. Its intuitive syntax and active community support further reinforced its
selection.

6.1.2 TensorFlow and Keras
TensorFlow served as the primary framework for developing and training the
machine learning models. TensorFlow’s extensive suite of features, including
efficient tensor operations, optimization utilities, and hardware acceleration,
made it an ideal choice for this project. Within the TensorFlow ecosystem,
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Keras was utilized for building the model architecture. Keras offers a high-level
API that simplifies the creation of complex neural network structures while
providing flexibility and compatibility with TensorFlow’s powerful backend.

6.1.3 NumPy and Pandas
NumPy was used for efficient numerical computations, while Pandas facilitated
structured data handling and preprocessing, particularly during the prepara-
tion of metadata and timestamps associated with satellite imagery.

6.1.4 Matplotlib and Seaborn
These libraries were employed for visualizing both raw input data and model
output. Visual inspections played a crucial role in validating the accuracy of
predictions and identifying misalignments.

6.1.5 EarthAccess and Copernicus APIs
Automated scripts used NASA EarthAccess and Copernicus Open Access Hub
APIs to fetch bulk satellite data, including thermal and vegetation indices for
selected urban regions.

6.2 Model Access and End-User Interface
To ensure accessibility and usability of the predictive outputs, the system
provides two complementary interface options for end-users: a programmatic
Application Programming Interface (API) for automated access and integra-
tion, and an interactive web-based visualization portal for intuitive exploration
of predictions. These interfaces are designed to support both technical users
and decision-makers across urban planning, environmental monitoring, and
climate resilience domains.

6.2.1 API for Programmatic Access
A RESTful API enables external users or systems to interact directly with
the trained machine learning models. Through the API, users can retrieve
existing predictions or generate new ones using their own input data. This
method is particularly suitable for integration into smart city platforms, plan-
ning dashboards, and research workflows that require automation or large-scale
processing.

The API exposes several endpoints, including:
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/predict — Allows users to submit custom environmental indicator data
(e.g., NDWI, EVI, or thermal bands) and returns a predicted land sur-
face temperature (LST) map as output. Input data must conform to a
standardized format to ensure compatibility with the model pipeline.

/results/<region>/<timestamp> — Provides access to precomputed pre-
diction outputs for supported urban areas and time frames, enabling rapid
retrieval of historical forecasts.

/metadata — Returns descriptive metadata associated with each predic-
tion, such as model version, resolution, input sources, and confidence met-
rics, supporting transparency and reproducibility.

This API facilitates real-time or batch-mode inference, allowing the system
to be embedded into larger infrastructures for operational use or academic
analysis.

6.2.2 Web Application for Interactive Visualization
For users seeking a more accessible and visually-oriented interface, a web ap-
plication portal is available. The portal offers an interactive environment for
viewing, comparing, and analyzing the predicted heat maps generated by the
system. It is tailored to meet the needs of urban designers, climate policy
advisors, and non-technical stakeholders.6.1

The key functionalities of the portal include:

Geospatial Heat Map Viewer — Predicted LST maps are rendered as over-
lays on top of geographic basemaps, allowing users to visually identify
spatial patterns of urban heat intensity across city districts.

Temporal Navigation Tools — A timeline slider allows users to explore the
evolution of heat patterns over time, supporting seasonal trend analysis
and before/after comparisons for redevelopment scenarios.

Custom Input Upload — Advanced users have the option to upload their
own multi-band indicator images, which are processed by the model to
generate customized LST predictions that are then displayed on the map.

Downloadable Assets — Users can export prediction results in standard
formats (e.g., PNG or GeoTIFF), accompanied by metadata files for doc-
umentation or further GIS analysis.
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Figure 6.1 Geoportal



Chapter 7

Prototype Demonstration and
Feedback

7.1 Presentation

7.1.1 Comparison of predictions with actual data
To assess the validity of the developed forecasting models, visual and numer-
ical comparisons were made between the predicted land surface temperature
(LST) maps and corresponding real-world satellite observations. In various
test cases across different cities, the predictions closely mirrored the actual
heat distributions, particularly in identifying spatial patterns of urban heat
hotspots. The visual resemblance between prediction and reality, as presented
in Figures 7.1 and 7.2, supports the reliability of the model’s outputs.

Figure 7.1 Abudhabi
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Figure 7.2 Barcelona prediction

7.1.2 Quantitative Evaluation of Prediction Accu-
racy

To evaluate the performance of the machine learning models developed in this
project, a quantitative assessment was conducted using key image similarity
and classification metrics. These metrics were applied to compare the predicted
land surface temperature (LST) maps with actual thermal imagery for selected
cities: Amsterdam, Barcelona, and Casablanca. The evaluation focused on
both pixel-level similarity and hotspot detection accuracy, offering insights
into model performance across different urban and climatic contexts. The
table below presents the best-performing model metrics for each city.

Table 7.1 Evaluation metrics of best-performing model per city

Metric Amsterdam Barcelona Casablanca
MAE 0.039 0.099 0.124
MSE 0.005 0.018 0.026
Cross-Correlation 0.368 0.648 0.598
Mutual Information 0.302 1.817 1.638
F1 Score 0.225 0.343 0.390
Recall 0.267 0.323 0.380
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7.2 Feedback

7.2.1 Ing. David Buchtela, Ph.D.
Ing. David Buchtela, Ph.D., head of the Management Informatics specializa-
tion at our faculty, provided constructive and encouraging feedback during the
thesis presentation. He expressed a strong appreciation for the comprehensive
economic and business analysis, particularly its clarity in communicating the
real-world applicability of the forecasting system to various stakeholders such
as city planners, utility providers, and healthcare institutions.

In addition to affirming the relevance of the business case, Dr. Buchtela
proposed an insightful extension of the model’s potential use cases. He high-
lighted the applicability of urban heat forecasting in the real estate sector, em-
phasizing its utility for both individuals and real estate agencies during prop-
erty acquisition decision-making. By integrating predicted long-term thermal
development into property evaluation, users of the visual interface can identify
areas likely to experience more favorable microclimates in the future, poten-
tially reducing energy consumption and improving living comfort.

Dr. Buchtela’s feedback underscores the model’s versatility and relevance
beyond public infrastructure and policy planning. It highlights the potential
for wider adoption in the private sector and introduces a novel dimension of
climate-informed decision-making in real estate economics—thereby broaden-
ing the scope of the tool’s impact.



Chapter 8

Conclusion and Future
Directions

This research embarked on an ambitious journey to leverage advanced machine
learning (ML) techniques and extensive satellite data for predicting urban
heat islands (UHIs), a pressing issue exacerbated by urban expansion and
climate change. The use of convolutional neural networks (CNNs) and long
short-term memory (LSTM) networks allowed for the extraction and analysis
of complex spatial and temporal patterns from NASA’s Landsat and ESA’s
Sentinel datasets, providing unprecedented insights into urban heat dynamics.

8.1 Conclusion
The developed ML models demonstrated significant potential in forecasting
extreme heat events, offering a robust tool for urban planners and policymak-
ers to proactively address the challenges posed by increased urban tempera-
tures. By integrating geospatial analysis with machine learning, this research
contributed to the advancement of urban climatology and demonstrated the
utility of satellite data in environmental monitoring and planning.

The economic analysis outlined the potential savings and cost reductions
in energy consumption, healthcare, and infrastructure maintenance by imple-
menting ML-driven UHI mitigation strategies. These findings underscore the
relevance and urgency of adopting advanced technologies to foster sustainable
urban environments.

8.1.1 Model Evaluation Summary
Quantitative evaluation of the best-performing models revealed diverse strengths
across different cities. Models for Amsterdam achieved the lowest mean ab-
solute error (MAE), showcasing excellent pixel-level prediction accuracy. In
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contrast, models developed for Barcelona and Casablanca exhibited superior
performance in classification metrics, such as F1 Score and cross-correlation,
indicating higher efficacy in detecting and aligning spatial patterns of urban
heat hotspots.

Figure 8.1 presents a comparative view of key metrics across cities, high-
lighting trade-offs between precise value prediction (MAE) and hotspot de-
tection accuracy (F1 Score, Cross-Correlation). These results suggest that
optimal model performance depends on the intended application—whether
minimizing thermal error or accurately identifying extreme heat zones.

Figure 8.1 Comparison of models across cities

These findings underscore the importance of city-specific model tuning and
the potential of deep learning to address urban thermal challenges with both
precision and contextual awareness.

8.2 Contributions
This thesis has made several key contributions to the field of urban climatology
and machine learning:

Development of a predictive model: By employing neural networks, the
project successfully created a reliable model capable of predicting urban
heat maps with high accuracy.

Economic impact analysis: The study quantitatively demonstrated the po-
tential economic benefits of implementing ML-based solutions for urban
heat management, highlighting significant opportunities for cost savings.

Advancement in remote sensing applications: The use of satellite data for
environmental monitoring was expanded, showcasing the effectiveness of
remote sensing in urban planning.
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8.3 Future Work
Looking ahead, several avenues for future research and development can be
considered to enhance the effectiveness and applicability of the findings:

Model refinement and optimization: Further tuning and testing of the
ML models to improve accuracy and reduce computational demands. Ex-
ploration of newer architectures and hybrid models may provide break-
throughs in predictive performance.

Expansion to other urban areas: Applying the developed models to a
broader range of cities and climates to test their generalizability and refine
them based on diverse urban layouts and environmental conditions.

Integration with IoT devices: Developing a real-time monitoring system
by integrating the predictive models with Internet of Things (IoT) devices
across urban centers could provide live data feeds, enhancing model accu-
racy and timeliness.

Public policy and community engagement: Working closely with urban
planners and policymakers to implement findings and models in real-world
scenarios. This includes community engagement to raise awareness about
UHI effects and mitigation strategies.

Socioeconomic impact studies: Conducting detailed studies on the socioe-
conomic impacts of UHI mitigation strategies could further justify invest-
ment in such technologies and encourage broader adoption.

The potential of machine learning in transforming urban environmental
management has just begun to be tapped. As technology advances and more
data becomes available, the opportunities to enhance urban living through
intelligent data analysis and application will only grow, promising a cooler,
more sustainable future for urban environments worldwide.



Appendix A

Source Code

This chapter contains the key Python source files used in the project, including
model training, evaluation, and prediction.

A.1 Training Script – train.py

1 import os
2 import pickle
3 import pandas as pd
4 import matplotlib.pyplot as plt
5 import json
6

7 import tensorflow as tf
8 from tensorflow.keras.utils import plot_model
9 from tensorflow.keras.mixed_precision import

set_global_policy
10

11 from utils.data_loader import load_data
12 from utils.models import build_model
13

14

15 if __name__ == "__main__":
16

17 with open('config.json', 'r') as file:
18 config = json.load(file)
19

20 MODEL_PATH = config['MODEL_PATH']
21 DATA_DIR = config['DATA_DIR']
22 IMAGE_Y = config['IMAGE_Y']
23 IMAGE_X = config['IMAGE_X']
24 SEQUENCE_LEN = config['SEQUENCE_LEN']
25 SEQUENCE_STEP = config['SEQUENCE_STEP']
26 FUTURE_STEP = config['FUTURE_STEP']

45
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27 INDICATORS_COUNT = config['INDICATORS_COUNT']
28 BATCH_SIZE = config['BATCH_SIZE']
29 EPOCHS = config['EPOCHS']
30

31 target_size=(IMAGE_X, IMAGE_Y)
32

33 train_ds , val_ds = load_data(DATA_DIR,
34 batch_size=BATCH_SIZE , sequence_length=

SEQUENCE_LEN , sequence_step=SEQUENCE_STEP ,
35 future_step=FUTURE_STEP , target_size=

target_size)
36

37 model = build_model(input_shape=(IMAGE_X, IMAGE_Y,
INDICATORS_COUNT * SEQUENCE_LEN))

38 plot_model(model, to_file="model_structure.png",
show_shapes=True, show_layer_names=True)

39

40 model.compile(optimizer='adam', loss='mse', metrics=['
mae'])

41

42 callbacks = [
43 tf.keras.callbacks.ModelCheckpoint(
44 filepath="models/checkpoints/model_checkpoint.h5

",
45 save_best_only=True,
46 monitor="val_loss",
47 mode="min"
48 ),
49 tf.keras.callbacks.TensorBoard(log_dir="logs")
50 ]
51

52 set_global_policy('mixed_float16')
53

54 history = model.fit(
55 train_ds,
56 validation_data=val_ds,
57 epochs=EPOCHS,
58 callbacks=callbacks
59 )
60

61 os.makedirs("models/final", exist_ok=True)
62 model.save(MODEL_PATH)
63

64 history_df = pd.DataFrame(history.history)
65 history_df.to_csv("training_log.csv", index=False)
66

67 with open("training_history.pkl", "wb") as f:
68 pickle.dump(history.history, f)

Code listing A.1 Model Training Script
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A.2 Prediction Script – predict.py

1 import numpy as np
2 import os
3 import json
4

5 import tensorflow as tf
6 from tensorflow.keras.models import load_model
7 from tensorflow.keras.preprocessing.image import

array_to_img
8

9 from utils.data_loader import preprocess_image ,
apply_colormap

10

11

12 def prepare_input_sequences(data_dir, sequence_length=3,
sequence_step=1, target_size=(128, 128)):

13 def get_sorted_image_paths(indicator_dir):
14 png_dir = os.path.join(indicator_dir , "png")
15 year_dirs = sorted(os.listdir(png_dir))
16 image_paths = []
17 for year in year_dirs:
18 year_path = os.path.join(png_dir, year)
19 if os.path.isdir(year_path):
20 year_images = sorted(
21 [os.path.join(year_path , img) for img in

os.listdir(year_path) if img.endswith(('.png', '.jpg'))]
22 )
23 image_paths.extend(year_images)
24 return image_paths
25

26 evi_dir = os.path.join(data_dir , "evi")
27 ndwi_dir = os.path.join(data_dir , "ndwi")
28 lst_dir = os.path.join(data_dir , "lst")
29

30 evi_paths = get_sorted_image_paths(evi_dir)
31 ndwi_paths = get_sorted_image_paths(ndwi_dir)
32 lst_paths = get_sorted_image_paths(lst_dir)
33

34 min_length = min(len(evi_paths), len(ndwi_paths), len(
lst_paths))

35 total_samples = min_length - (sequence_length - 1) *
sequence_step

36

37 if total_samples < 1:
38 raise ValueError(
39 f"Not enough images to form sequences. Required

at least {sequence_length * sequence_step}, found: {
min_length}"
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40 )
41

42 input_sequences = []
43

44 for i in range(total_samples):
45 evi_sequence = [preprocess_image(evi_paths[j],

target_size) for j in range(i, i + sequence_length *
sequence_step , sequence_step)]

46 ndwi_sequence = [preprocess_image(ndwi_paths[j],
target_size) for j in range(i, i + sequence_length *
sequence_step , sequence_step)]

47 lst_sequence = [preprocess_image(lst_paths[j],
target_size) for j in range(i, i + sequence_length *
sequence_step , sequence_step)]

48

49 evi_stack = tf.concat(evi_sequence , axis=-1)
50 ndwi_stack = tf.concat(ndwi_sequence , axis=-1)
51 lst_stack = tf.concat(lst_sequence , axis=-1)
52

53 input_tensor = tf.concat([evi_stack , ndwi_stack ,
lst_stack], axis=-1)

54 input_sequences.append(input_tensor)
55

56 return np.array(input_sequences)
57

58

59 def predict_and_save(model_path , data_dir , output_dir ,
sequence_length=3, sequence_step=1, target_size=(128,
128)):

60 model = load_model(model_path)
61 input_sequences = prepare_input_sequences(data_dir,

sequence_length , sequence_step , target_size)
62

63 predictions = model.predict(input_sequences)
64

65 os.makedirs(output_dir , exist_ok=True)
66 for i, pred in enumerate(predictions):
67 pred_img = array_to_img(pred)
68 pred_img = apply_colormap(pred_img)
69 pred_img = array_to_img(pred_img)
70 pred_img.save(os.path.join(output_dir , f"

predicted_image_{i + 1}.png"))
71

72 if __name__ == "__main__":
73 OUTPUT_DIR = "predicted_images"
74

75 with open('config.json', 'r') as file:
76 config = json.load(file)
77

78
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79 MODEL_PATH = config['MODEL_PATH']
80 DATA_DIR = config['DATA_DIR']
81 IMAGE_Y = config['IMAGE_Y']
82 IMAGE_X = config['IMAGE_X']
83 SEQUENCE_LEN = config['SEQUENCE_LEN']
84 SEQUENCE_STEP = config['SEQUENCE_STEP']
85 target_size = (IMAGE_X, IMAGE_Y)
86

87 predict_and_save(MODEL_PATH , DATA_DIR , OUTPUT_DIR ,
sequence_length=SEQUENCE_LEN , sequence_step=SEQUENCE_STEP
, target_size=target_size)

Code listing A.2 Prediction Script

A.3 Evaluation Script – evaluation.py

1 import tensorflow as tf
2 import numpy as np
3 import os
4 import json
5 import re
6 from tensorflow.keras.models import load_model
7 from sklearn.metrics import mean_absolute_error , f1_score,

recall_score , mean_squared_error
8 from skimage.metrics import peak_signal_noise_ratio as

psnr_metric
9 from scipy.stats import pearsonr

10 from sklearn.metrics import mutual_info_score
11

12 from utils.data_loader import load_city_data
13

14

15

16 def detect_hotspots(image, window_size=10, threshold_factor
=1.10):

17

18 height, width = image.shape
19 hotspot_mask = np.zeros_like(image, dtype=np.uint8)
20 padded_image = np.pad(image, pad_width=((window_size//2,

window_size//2), (window_size//2, window_size//2)),
21 mode='reflect')
22

23 for i in range(height):
24 for j in range(width):
25 local_window = padded_image[i:i+window_size , j:j

+window_size]
26

27 local_window = local_window.flatten()
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28 local_window = np.delete(local_window , len(
local_window)//2)

29

30 local_avg = np.mean(local_window)
31

32 if image[i, j] > local_avg * threshold_factor:
33 hotspot_mask[i, j] = 1
34

35 return hotspot_mask
36

37 def cross_correlation(a, b):
38 a_mean = np.mean(a)
39 b_mean = np.mean(b)
40 numerator = np.sum((a - a_mean) * (b - b_mean))
41 denominator = np.sqrt(np.sum((a - a_mean)**2) * np.sum((

b - b_mean)**2))
42 return numerator / denominator if denominator != 0 else

0
43

44

45 def mutual_information(a, b, bins=256):
46 hist_2d, _, _ = np.histogram2d(a.flatten(), b.flatten(),

bins=bins)
47 return mutual_info_score(None, None, contingency=hist_2d

)
48

49

50 def evaluate_model(model, data_dir, sequence_length=3,
sequence_step=1, future_step=1,

51 target_size=(128, 128),
hotspot_threshold_factor=1.05):

52 train_data , _ = load_city_data(data_dir , batch_size=1,
sequence_length=sequence_length ,

53 sequence_step=sequence_step ,
future_step=future_step , target_size=target_size)

54

55 metrics = {
56 "mae": [],
57 "mse": [],
58 "rmse": [],
59 "psnr": [],
60 "cross_corr": [],
61 "mutual_info": [],
62 "f1": [],
63 "recall": [],
64 }
65

66 hotspot_images = 0
67 total_images = 0
68
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69 image_index = 0
70

71 for inputs, actual_output in train_data:
72

73 predicted_output = model.predict(inputs, verbose=0)
74

75 pred_gray = predicted_output[0, :, :, 0].numpy() if
isinstance(predicted_output , tf.Tensor) else
predicted_output[0, :, :, 0]

76 actual_gray = actual_output[0, :, :, 0].numpy() if
isinstance(actual_output , tf.Tensor) else actual_output
[0, :, :, 0]

77

78 # --- Basic Metrics ---
79 mae = mean_absolute_error(actual_gray.flatten(),

pred_gray.flatten())
80 mse = mean_squared_error(actual_gray.flatten(),

pred_gray.flatten())
81 rmse = np.sqrt(mse)
82 psnr = psnr_metric(actual_gray , pred_gray ,

data_range=1.0)
83 xcorr = cross_correlation(actual_gray , pred_gray)
84 mi = mutual_information(actual_gray , pred_gray)
85

86 # --- Hotspot Detection ---
87 actual_hotspots = detect_hotspots(actual_gray ,

threshold_factor=hotspot_threshold_factor)
88 pred_hotspots = detect_hotspots(pred_gray ,

threshold_factor=hotspot_threshold_factor)
89

90 f1 = f1_score(actual_hotspots.flatten(),
pred_hotspots.flatten(), zero_division=0)

91 recall = recall_score(actual_hotspots.flatten(),
pred_hotspots.flatten(), zero_division=0)

92

93 if np.sum(actual_hotspots) > 0:
94 hotspot_images += 1
95 total_images += 1
96

97 # --- Save Metrics ---
98 metrics["mae"].append(mae)
99 metrics["mse"].append(mse)

100 metrics["rmse"].append(rmse)
101 metrics["psnr"].append(psnr)
102 metrics["cross_corr"].append(xcorr)
103 metrics["mutual_info"].append(mi)
104 metrics["f1"].append(f1)
105 metrics["recall"].append(recall)
106

107 image_index += 1
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108

109 # --- Calculate Averages ---
110 avg_metrics = {key: float(np.mean(values)) for key,

values in metrics.items()}
111 hotspot_percentage = (hotspot_images / total_images) *

100 if total_images > 0 else 0
112 avg_metrics["hotspot_percentage"] = hotspot_percentage
113

114 return avg_metrics

Code listing A.3 Model Evaluation Script

A.4 Configuration File – config.json

1 {
2 "MODEL_PATH": "models/final/heat_map_model.keras",
3 "DATA_DIR": "C:\\Path\\To\\Dataset\\Directory",
4 "IMAGE_Y": 1024,
5 "IMAGE_X": 1024,
6 "SEQUENCE_LEN": 4,
7 "SEQUENCE_STEP": 5,
8 "FUTURE_STEP": 10,
9 "INDICATORS_COUNT": 3,

10 "BATCH_SIZE": 32,
11 "EPOCHS": 100
12 }

Code listing A.4 Configuration File Example
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Trained Machine Learning
Models

This chapter describes the pre-trained machine learning models included with
this thesis.

Model Files Location
All models are included in the directory: models/final/

B.1 List of Models
heat_map_barcelona.keras – Model trained on Barcelona data.

heat_map_casablanca.keras – Model trained on Casablanca data.

B.2 Usage Instructions
To use these models for prediction, place the desired model file path in config.json
or specify it directly in predict.py.

Example:

"MODEL_PATH": "models/final/heat_map_barcelona.keras"

B.3 Notes
Models use different input dimensions and data structure. Barcelona, Casablanca,
Chennai models parameters:

”IMAGE_Y”: 1024,

53
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”IMAGE_X”: 1024,

”SEQUENCE_LEN”: 4,

”SEQUENCE_STEP”: 5,

”FUTURE_STEP”: 10
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